Access violation writing location

Hi,I am having this error and it crashed. would you help me to find the problem?
thanks

Exception thrown at 0x00892C0B in AMIRHOSSEIN19.exe: 0xC0000005: Access violation writing location 0x00D41924.
If there is a handler for this exception, the program may be safely continued.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#include<iostream>
#include<math.h>
#include<iomanip>
#include<stdio.h>
#include<conio.h>
using namespace std;
int main()
{
	//lnput data
	double  tem, cimp, tmax, pi, q, h, bk, ep0, am0, fx;
	double am1, am2;
	double  ec[2];
	double eg, eps, epf, ep;
	int mi = 1048576, in = 1027, iseed = 38467; double rnd;
	double rou, sv, cl, z2, da, dij, deq, hwo, hwij, hwe;
	double af[2], af2[2], af4[2];
	double bktq, qh, smh[2], hhm[2], hm[2];
	double wo, wij, we, no, nij, ne, dos1, dos2, poe, poa, aco, ope, opa, eqe, eqa;
	double qd, qd2, bimp;
	double de, iemax, sei, ei;
	long double swk[2][8][1000];
	int ie;
	double ef, sef, qmax, qmin;
	double ak, qq, wk;
	double ve, en, ft1, ft2, e,
		ki, cs, sn, fai, kx, ky, kz, sk;
	double f, sb, cf, sf, skk, a11, a12, a13, a21,
		a22, a23, a31, a32, a33, x1, x2, x3;
	int iv;
	double gm;
	int i = 1;
	double t, tau;
	double dkx, skx, sky, skz, sq;
	/*cout << " lattice temperature = \n ";
	cin >> tem;
	cout << " Imurity concentration = \n ";
	cin >> cimp;
	cout << " Total simulation time = \n ";
	cin >> tmax;
	cout << " Applied electric field = \n ";
	cin >> fx;*/
	tem = 300;
	cimp = 1.e+22;
	tmax = 2.e-9;
	fx = 5.e5;
	pi = 3.14159;
	q = 1.60219e-19;
	h = 1.05459e-34;
	bk = 1.38066e-23;
	ep0 = 8.85419e-12;
	am0 = 9.10953e-31;
	//Effective masses

	am1 = 0.067*am0;
	am2 = 0.350*am0;
	//Energy minima of bands
	ec[1] = 0;
	ec[2] = 0.29;
	//Energy gap & dielectric constant 
	eg = 1.424;
	eps = 12.90*ep0;
	epf = 10.92*ep0;
	ep = 1. / (1. / epf - 1. / eps);
	//	Random number generator		  

	iseed = in*iseed %mi;
	rnd = (float)iseed / (float)mi;
	//Parameters for phonon scatterings

	rou = 5360.;
	sv = 5240.;
	cl = rou*sv*sv;
	z2 = 4;
	da = 7. * q;
	dij = 1.e11*q;
	deq = 1.e11*q;
	hwo = 0.03536;
	hwij = 0.03;
	hwe = hwij;
	//Non-parabolicity of Gamma & L bands

	af[1] = (pow((1. - am1 / am0), 2)) / eg;
	af2[1] = 2.*af[1];
	af4[1] = 4.*af[1];
	af[2] = (pow((1. - am2 / am0), 2)) / (eg + ec[2]);
	af2[2] = 4.*af[2];
	af2[2] = 2.*af[2];

	bktq = (bk*tem) / q;
	qh = q / h;
	smh[1] = sqrt(2.*am1)*(sqrt(q)) / h;
	smh[2] = sqrt(2.*am2)*(sqrt(q)) / h;
	hhm[1] = h / am1 / q*h / 2;
	hhm[1] = h / am2 / q*h / 2;
	hm[1] = h / am1;
	hm[2] = h / am2;
	we = hwe*q / h;
	wo = (hwo*q) / h;
	wij = (hwij*q) / h;
	no = 1. / (exp(hwo / bktq) - 1.);
	nij = 1. / (exp(hwo / bktq) - 1.);
	ne = 1. / (exp(hwo / bktq) - 1.);
	dos1 = pow((sqrt(2.*am1)*sqrt(q) / h), 3) / 4. / pi / pi;
	dos2 = pow((sqrt(2.*am2)*sqrt(q) / h), 3) / 4. / pi / pi;
	poe = q / 8. / pi / ep*q*wo*(no + 1.);
	poa = poe*no / (1. + no);
	aco = 2.*pi*da / q*da*bktq / h*q / cl;
	ope = pi*dij / wij*deq / rou / q*(nij + 1.);
	opa = ope*nij / (1. + nij);
	eqe = pi*deq / we*deq / rou / q*(ne + 1.);
	eqa = eqe*ne / (1. + ne);
	//Parameters for impurity scatterings

	qd = sqrt(q*cimp / bktq / eps);
	qd2 = qd*qd;
	bimp = 2.*pi*cimp*q*q / h*q / eps / eps;
	//Calculation of scattering rates

	de = 0.002;
	ie = 1;
	iemax = 1000;
	while (ie <= iemax)
	{
		ie++;
		ei = de*(float)ie;
		sei = sqrt(ei);
		//Gamma-valley(Polar optical phonon)


		ef = ei - hwo;
		if (ef > 0) {
			sef = sqrt(ef);
			qmax = sef + sei;
			qmin = sei - sef;
			swk[1][1][ie] = poe*smh[1] * sei / ei / q*log(qmax / qmin);
		}
		else {
			swk[1][1][ie] = 0;
		}

		ef = ei + hwo;
		sef = sqrt(ef);
		qmax = sef + sei;
		qmin = sef - sei;
		swk[1][2][ie] = swk[1][1][ie] + poa*smh[1] * sei / ei / q*log(qmax / qmin);
		ef = ei - hwij + ec[1] - ec[2];
		if (ef > 0) {
			sef = sqrt(ef*(1. + af[2] * ef));
			swk[1][3][ie] = swk[1][2][ie] + z2*ope*sef*dos2*(1. + 2.*af[2] * ef);
		}
		else {
			swk[1][3][ie] = swk[1][2][ie];
		}

		ef = ei + hwij + ec[1] - ec[2];
		if (ef > 0) {
			sef = sqrt(ef*(1. + af[2] * ef));
			swk[1][4][ie] = swk[1][3][ie] + z2*opa*sef*dos2*(1. + af[1] * ef);
		}
		else {
			swk[1][4][ie] = swk[1][3][ie];
		}

		//Acoustic phonon
		ef = ei;
		sef = sqrt(ef*(1. + af[1] * ef));
		swk[1][5][ie] = swk[1][4][ie] + aco*sef*dos1*(1. + 2.*af[1] * ef);
		//lmpurity scattering 

		ef = ei;
		sef = sqrt(ef*(1. + af[1] * ef));
		ak = smh[1] * sef;
		qq = qd2*(4.*ak*ak + qd2);
		wk = bimp / qq*sef*dos1 *(1. + 2.*af[1] * ef);
		if (wk > 1.e14) {
			wk = 1.e14;
			swk[1][6][ie] = swk[1][5][ie] + wk;
		}

		//L-valleys 
		// Polar optical phonon

		ef = ei - hwo;
		if (ef > 0) {
			sef = sqrt(ef);
			qmax = sef + sei;
			qmin = sei - sef;
			swk[2][1][ie] = poe*smh[2] * sei / ei / q*log(qmax / qmin);
		}
		else {
			swk[2][1][ie] = 0;
		}

		ef = ei + hwo;
		sef = sqrt(ef);
		qmax = sef + sei;
		qmin = sef - sei;
		swk[2][2][ie] = swk[2][1][ie] + poa*smh[2] * sei / ei / q*log(qmax / qmin);
		//Non - polar optical phonon
		ef = ei - hwe;
		if (ef > 0) {
			sef = sqrt(ef*(1. + af[2] * ef));
			swk[2][3][ie] = swk[2][2][ie] + (z2 - 1.)*eqe*sef *dos2*(1. + 2.*af[2] * ef);
		}
		else {
			swk[2][3][ie] = swk[2][2][ie];
		}


		ef = ei + hwe;
		sef = sqrt(ef * (1. + af[2] * ef));
		swk[2][4][ie] = swk[2][3][ie] + (z2 - 1.)*eqa*sef*dos2*(1. + 2.*af[2] * ef);

		ef = ei - hwij + ec[2] - ec[1];
		if (ef > 0) {
			sef = sqrt(ef*(1. + af[1] * ef));
			swk[2][5][ie] = swk[2][4][ie] + ope*sef*dos1*(1. + 2.*af[1] * ef);
		}
		else {
			swk[2][5][ie] = swk[2][4][ie];
		}

		ef = ei + hwij + ec[2] - ec[1];
		if (ef > 0) {
			sef = sqrt(ef*(1. + af[1] * ef));
			swk[2][6][ie] = swk[2][5][ie] + opa*sef*dos1*(1. + 2.*af[1] * ef);
		}

		else {
			swk[2][6][ie] = swk[2][5][ie];
		}

		//Acoustic phonon
		ef = ei;
		sef = sqrt(ef*(1. + af[2] - ef));
		swk[2][7][ie] = swk[2][6][ie] + aco*sef*dos2*(1. + 2.*af[2] * ef);
		//lmpurity scattering
		ef = ei;
		sef = sqrt(ef*(1. + af[2] * ef));
		ak = smh[2] * sef;
		qq = qd2*(4.*ak*ak + qd2);
		wk = bimp / qq*sef*dos2*(1. + 2.*af[2] * ef);
		if (wk > 1.e14) {
			wk = 1.e14;
			swk[2][8][ie] = swk[2][7][ie] + wk;
		}
		
	}

.....
Last edited on
.......continue
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


	//Evaluation of Gamma

	gm = swk[1][6][1];
	while (ie <= iemax) {
		ie++;
		if (swk[1][6][ie] > gm)
			gm = swk[1][6][ie];
		if (swk[2][8][ie] > gm)
			gm = swk[2][8][ie];
		continue;
	}



	while (i <= 6 && ie <= iemax)
	{
		i++;
		ie++;
		swk[1][i][ie] = swk[1][i][ie] / gm;
		continue;
	}

	while (i <= 8 && ie <= iemax)
	{
		i++;
		ie++;
		swk[2][i][ie] = swk[2][i][ie] / gm;
		continue;
	}


	// (lnitial condition for particles

	ve = 0;
	en = 0.;
	ft1 = 0;
	ft2 = 0;
	if (fx >= 1.e5)
		iv = 1;
	else
		iv = 2;
	e = -bktq*log(rnd) * 1.5;
	ki = smh[iv] * sqrt(e*(1. + af[iv] * e));
	cs = 1. - 2.*rnd;
	sn = sqrt(1. - cs*cs);
	fai = 2.*pi*rnd;
	kx = ki*cs;
	ky = ki*sn*cos(fai);
	kz = ki*sn*sin(fai);
	sk = kx*kx + ky*ky + kz*kz;


	// Particle motion during simulation time


	t = 0;
	do {
		tau = (-log(rnd) / gm);
		t = t + tau;
	} while (t < tmax);


	// Calculation of drift process

	ei = e;
	dkx = qh*fx*tau;
	kx = kx + dkx;
	skx = kx*kx;
	sky = ky*ky;
	skz = kz*kz;
	sk = skx + sky + skz;
	sq = sqrt(1. + af4[iv] * hhm[iv] * sk);
	ef = (sq - 1.) / af2[iv];
	e = ef;
	ve = ve + (ef - ei);
	en = en + (ef + ei + ec[iv])*tau;

	// Calculation of scatterirlg process
	ei = e;
	if (ei == 0) {
		ki = sqrt(sk);
		ie = (int)(ei / de) + 1;
	}
	if (ie > iemax)
		ie = iemax;
	if (iv == 1)
		goto hezar;
	else
		goto dohezar;
	//Selection of scattering process
	double r1, r2, kf, cb;
hezar:  r1 = rnd;
	if (r1 <= swk[1][1][ie])
		ef = ei - hwo;
	if (ef <= 0)
		goto  bistt;
	else if (r1 <= swk[1][2][ie]) {
		ef = ei + hwo;
		goto bistt;
	}
	else if (r1 <= swk[1][3][ie]) {
		ef = ei - hwij + ec[1] - ec[2];
	}

	if (ef <= 0.) {
		iv = 2;
		goto chehel;
	}
	else if (r1 <= swk[1][4][ie])
		ef = ei + hwij + ec[1] - ec[2];
	if (ef <= 0.)
	{
		iv = 2;
		goto  chehel;
	}
	else if (r1 <= swk[1][5][ie])
	{
		ef = ei;
		kf = ki;
		goto  chehel;
	}
	else if (r1 <= swk[1][6][ie])
	{
		ef = ei;
		r2 = rnd;
		cb = 1. - r2 / (0.5 + (1. - r2)*sk / qd2);
		kf = ki;
		goto si;

	}

dohezar: r1 = rnd;
	if (r1 <= swk[2][1][ie])
		ef = ei - hwo;
	if (ef <= 0.)
		goto bistt;
	else if (r1 <= swk[2][2][ie])
	{
		ef = ei + hwo;
		goto bistt;
	}
	else if (r1 <= swk[2][3][ie])
		ef = ei - hwe;
	if (ef <= 0.)
		goto chehel;
	else if (r1 <= swk[2][4][ie])
	{
		ef = ei + hwe;
		goto chehel;
	}
	else if (r1 <= swk[2][5][ie])
		ef = ei - hwij + ec[2] - ec[1];
	if (ef <= 0.)
	{
		iv = 1;
		goto chehel;
	}
	else if (r1 <= swk[2][6][ie])
		ef = ei + hwij + ec[2] - ec[1];
	if (ef <= 0.)
	{
		iv = 1;
		goto chehel;
	}
	else if (r1 <= swk[2][7][ie])
		ef = ei;
	kf = ki;
	goto chehel;

	if (r1 <= swk[2][8][ie])
	{
		ef = ei;
		r2 = rnd;
		cb = 1. - r2 / (0.5 + (1. - r2)*sk / qd2);
		kf = ki;
		goto si;
	}
	//Determination of final states

bistt:
	kf = smh[iv] * sqrt(ef*(1. + af[iv] * ef));
	f = 2.*ki*kf / (ki - kf) / (ki - kf);
	if (f <= 0.)
		cb = (pow((1. + f - (1. + 2.*f)), rnd)) / f;
si: sb = sqrt(1. - cb*cb);
	fai = 2.*pi*rnd;
	cf = cos(fai);
	sf = sin(fai);
	skk = sqrt(kx*kx + ky*ky);
	a11 = ky / skk;
	a12 = kx*kz / skk / ki;
	a13 = kx / ki;
	a21 = -kx / skk;
	a22 = ky*kz / skk / ki;
	a23 = ky / ki;
	a32 = -skk / ki;
	a33 = kz / ki;
	x1 = kf*sb*cf;
	x2 = kf*sb*sf;
	x3 = kf*cb;
	kx = a11 * x1 + a12*x2 + a13*x3;
	ky = a21 *x1 + a22*x2 + a23*x3;
	kz = a32*x2 + a33*x3;
	e = ef;
chehel:  kf = smh[iv] * sqrt(ef*(1. + af[iv] * ef));
	cs = 1. - 2.*rnd;
	sn = sqrt(1. - cs*cs);
	fai = 2.*pi*rnd;
	kx = kf*cs;
	ky = kf*sn*cos(fai);
	kz = kf*sn*sin(fai);
	e = ef;

	//Output routine
	ve = ve / fx / tmax;
	en = en / tmax / 2.;
	ft1 = ft1 / tmax;
	ft2 = ft2 / tmax;
	cout << (fx, ve, en, ft1, ft2);



	system("pause");
	return(0);

}
Last edited on
Hi,

TL;DR

Have a go with a debugger.

Also avoid using goto. Use functions or loops instead.

Consider delaying declaration until you have a sensible value to assign to it. Do 1 declaration per LOC and either use a meaningful name or comment what the variable name means (this is fine for common mathematical names)

if (swk[2][8][ie] > gm)

The 2 and the 8 are invalid here, the declaration was long double swk[2][8][1000];

Make more use of const

Another thing to possible check is for division by zero - it's a very common problem - I would always do it with code.

Hope this helps :+)
Thank you so much
Topic archived. No new replies allowed.