1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

// From Dijkstras.cpp
// Adjusted to remove the Visual Studio bloat and bring closer to C++.
// Step one remove stdafx.h .
// Step two replace stdafx.h dependencies with better C++ code.
// Step three analyze program and fix or replace any or all of it.
//#include "stdafx.h" // Removed stdafx.h , the disgusting convoluted mess.
// Without stdafx.h code works closer to C and C++.
// Adjusted in other places also.
// At least I am getting faster at removing Visual Studio from code examples
// and bringing that code closer to clean C and clean C++.
// The following seems to me to be a waste of processing. I think that I should
// be able to dynamically adjust the weights and dynamically reevaluate the paths.
// The following code looks like bloat to impress other coders.
// I think that this should be broken down into simply math equations,
// then input into arrays which have changeable entries.
// I will be considering this further.
// Suggestions are appreciated.
#include <iostream>
#include <vector>
using namespace std;
void DijkstrasTest();
int main(int argc, char* argv[])
{
DijkstrasTest();
return 0;
}
//////////////
class Node;
class Edge;
void Dijkstras();
vector<Node*>* AdjacentRemainingNodes(Node* node);
Node* ExtractSmallest(vector<Node*>& nodes);
int Distance(Node* node1, Node* node2);
bool Contains(vector<Node*>& nodes, Node* node);
void PrintShortestRouteTo(Node* destination);
vector<Node*> nodes;
vector<Edge*> edges;
class Node // This looks like bloat to impress. I think that I should process this in a simple mathematical formula.
{
public:
Node(char id)
: id(id), previous(NULL), distanceFromStart(INT_MAX)
{
nodes.push_back(this);
}
public:
char id;
Node* previous;
int distanceFromStart;
};
class Edge // This looks like more bloat to impress. I think that I should process this in a simple mathematical formula.
{
public:
Edge(Node* node1, Node* node2, int distance)
: node1(node1), node2(node2), distance(distance)
{
edges.push_back(this);
}
bool Connects(Node* node1, Node* node2)
{
return (
(node1 == this>node1 &&
node2 == this>node2) 
(node1 == this>node2 &&
node2 == this>node1));
}
public:
Node* node1;
Node* node2;
int distance;
};
///////////////////
void DijkstrasTest() // This looks like more bloat to impress. I think that I should process this in a simple mathematical formula.
{
Node* a = new Node('a');
Node* b = new Node('b');
Node* c = new Node('c');
Node* d = new Node('d');
Node* e = new Node('e');
Node* f = new Node('f');
Node* g = new Node('g');
Edge* e1 = new Edge(a, c, 1);
Edge* e2 = new Edge(a, d, 2);
Edge* e3 = new Edge(b, c, 2);
Edge* e4 = new Edge(c, d, 1);
Edge* e5 = new Edge(b, f, 3);
Edge* e6 = new Edge(c, e, 3);
Edge* e7 = new Edge(e, f, 2);
Edge* e8 = new Edge(d, g, 1);
Edge* e9 = new Edge(g, f, 1);
a>distanceFromStart = 0; // set start node
Dijkstras();
PrintShortestRouteTo(f);
// TODO: Node / Edge memory cleanup not included
}
///////////////////
void Dijkstras() // This looks maybe useful.
{
while (nodes.size() > 0)
{
Node* smallest = ExtractSmallest(nodes);
vector<Node*>* adjacentNodes =
AdjacentRemainingNodes(smallest);
const int size = adjacentNodes>size();
for (int i=0; i<size; ++i)
{
Node* adjacent = adjacentNodes>at(i);
int distance = Distance(smallest, adjacent) +
smallest>distanceFromStart;
if (distance < adjacent>distanceFromStart)
{
adjacent>distanceFromStart = distance;
adjacent>previous = smallest;
}
}
delete adjacentNodes;
}
}
// Find the node with the smallest distance,
// remove it, and return it.
Node* ExtractSmallest(vector<Node*>& nodes) // This looks maybe useful.
{
int size = nodes.size();
if (size == 0) return NULL;
int smallestPosition = 0;
Node* smallest = nodes.at(0);
for (int i=1; i<size; ++i)
{
Node* current = nodes.at(i);
if (current>distanceFromStart <
smallest>distanceFromStart)
{
smallest = current;
smallestPosition = i;
}
}
nodes.erase(nodes.begin() + smallestPosition);
return smallest;
}
// Return all nodes adjacent to 'node' which are still
// in the 'nodes' collection.
vector<Node*>* AdjacentRemainingNodes(Node* node) // This looks maybe useful.
{
vector<Node*>* adjacentNodes = new vector<Node*>();
const int size = edges.size();
for(int i=0; i<size; ++i)
{
Edge* edge = edges.at(i);
Node* adjacent = NULL;
if (edge>node1 == node)
{
adjacent = edge>node2;
}
else if (edge>node2 == node)
{
adjacent = edge>node1;
}
if (adjacent && Contains(nodes, adjacent))
{
adjacentNodes>push_back(adjacent);
}
}
return adjacentNodes;
}
// Return distance between two connected nodes
int Distance(Node* node1, Node* node2) // This looks maybe useful.
{
const int size = edges.size();
for(int i=0; i<size; ++i)
{
Edge* edge = edges.at(i);
if (edge>Connects(node1, node2))
{
return edge>distance;
}
}
return 1; // should never happen
}
// Does the 'nodes' vector contain 'node'
bool Contains(vector<Node*>& nodes, Node* node) // Too much of the bloat is still being used. This might be useful but after adjusting.
{
const int size = nodes.size();
for(int i=0; i<size; ++i)
{
if (node == nodes.at(i))
{
return true;
}
}
return false;
}
///////////////////
void PrintShortestRouteTo(Node* destination) // This looks wasteful. This should have already been handled in the math analysis and then prepared for back buffer blitting.
{
Node* previous = destination;
cout << "Distance from start: "
<< destination>distanceFromStart << endl;
while (previous)
{
cout << previous>id << " ";
previous = previous>previous;
}
cout << endl;
}
// these two not needed // OK. There was other stuff not needed so far.
vector<Edge*>* AdjacentEdges(vector<Edge*>& Edges, Node* node);
void RemoveEdge(vector<Edge*>& Edges, Edge* edge);
vector<Edge*>* AdjacentEdges(vector<Edge*>& edges, Node* node)
{
vector<Edge*>* adjacentEdges = new vector<Edge*>();
const int size = edges.size();
for(int i=0; i<size; ++i)
{
Edge* edge = edges.at(i);
if (edge>node1 == node)
{
cout << "adjacent: " << edge>node2>id << endl;
adjacentEdges>push_back(edge);
}
else if (edge>node2 == node)
{
cout << "adjacent: " << edge>node1>id << endl;
adjacentEdges>push_back(edge);
}
}
return adjacentEdges;
}
void RemoveEdge(vector<Edge*>& edges, Edge* edge) // Delete it. Use something else.
{
vector<Edge*>::iterator it;
for (it=edges.begin(); it<edges.end(); ++it)
{
if (*it == edge)
{
edges.erase(it);
return;
}
}
}
 