Binary Search Trees

Hey, so I'm having a lot of trouble writing a class for binary search tree's. It must perserve AVL at all times and do single and double rotations where necessary.

I dont even know where to begin. I made a tree node class that points to left, right, and keeps a value. Now what!? I'm so lost.
You can begin by creating an struct
struct bintree{int key; bintree* left;bintree* right;}
this holds a value called key and two pointer left and right.
@TFulton88
I can give you my binary search tree template class for study issues only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/************************************************************************/
/*   Project:    Implementation Binary Seach Tree with templeates        */
/*                Created by Gofur Halmuratov  1.04.2008                 */
/************************************************************************/
#include <iostream>
#include <cstdlib>
using namespace std;
template<class T> 
class BinarySearchTree
{
private:
	struct tree_node
	{
		tree_node* left;
		tree_node* right;
		T data;
	};
	tree_node* root;
public:
	BinarySearchTree()
	{
		root = NULL;
	}
	bool isEmpty() const { return root==NULL; }
	void print_inorder();
	void inorder(tree_node*);
	void print_preorder();
	void preorder(tree_node*);
	void print_postorder();
	void postorder(tree_node*);
	void insert(T);
	void remove(T);
	bool search(T);
};


template <class T>
void BinarySearchTree<T>::insert(T d)
{
	tree_node* t = new tree_node;
	tree_node* parent;
	t->data = d;
	t->left = NULL;
	t->right = NULL;
	parent = NULL;
	// is this a new tree?
	if(isEmpty()) root = t;
	else
	{
		//Note: ALL insertions are as leaf nodes
		tree_node* curr;
		curr = root;
		// Find the Node's parent
		while(curr)
		{
			parent = curr;
			if(t->data > curr->data) curr = curr->right;
			else curr = curr->left;
		}

		if(t->data < parent->data)
			parent->left = t;
		else
			parent->right = t;
	}
}
template <class T>
bool BinarySearchTree<T>::search(T d)
{
	//Locate the element
	bool found = false;
	if(isEmpty())
	{
		cout<<" This Tree is empty! "<<endl;
		return false;
	}
	tree_node* curr;
	tree_node* parent;
	curr = root;
	parent = (tree_node*)NULL;
	while(curr != NULL)
	{
		if(curr->data == d)
		{
			found = true;
			break;
		}
		else
		{
			parent = curr;
			if(d>curr->data) curr = curr->right;
			else curr = curr->left;
		}
	}
	if(!found)
	{
		cout<<" Data not found! "<<endl;
	}
	else
	{
		cout<<" Data found! "<<endl;
	}

	return found;
}

template <class T>
void BinarySearchTree<T>::remove(T d)
{
	bool found = false;
	if(isEmpty())
	{
		cout<<" This Tree is empty! "<<endl;
		return;
	}
	tree_node* curr;
	tree_node* parent;
	curr = root;
	parent = (tree_node*)NULL;
	while(curr != NULL)
	{
		if(curr->data == d)
		{
			found = true;
			break;
		}
		else
		{
			parent = curr;
			if(d>curr->data) curr = curr->right;
			else curr = curr->left;
		}
	}
	if(!found)
	{
		cout<<" Data not found! "<<endl;
		return;
	}

	// Node with single child
	if((curr->left == NULL && curr->right != NULL)|| (curr->left != NULL
		&& curr->right == NULL))
	{
		if(curr->left == NULL && curr->right != NULL)
		{			
			if(parent->left == curr)
			{
				parent->left = curr->right;
				delete curr;
			}
			else
			{
				parent->right = curr->right;
				delete curr;
			}
		}
		else // left child present, no right child
		{
			if(parent->left == curr)
			{
				parent->left = curr->left;
				delete curr;
			}
			else
			{
				parent->right = curr->left;
				delete curr;
			}
		}
		return;
	}

	//We're looking at a leaf node
	if( curr->left == NULL && curr->right == NULL)
	{
		if (parent == NULL)
		{
			delete curr;

		} else
			if(parent->left == curr) parent->left = NULL;
			else parent->right = NULL;
			delete curr;
			return;
	}


	//Node with 2 children
	// replace node with smallest value in right subtree
	if (curr->left != NULL && curr->right != NULL)
	{
		tree_node* chkr;
		chkr = curr->right;
		if((chkr->left == NULL) && (chkr->right == NULL))
		{
			curr = chkr;
			delete chkr;
			curr->right = NULL;
		}
		else // right child has children
		{
			//if the node's right child has a left child
			// Move all the way down left to locate smallest element

			if((curr->right)->left != NULL)
			{
				tree_node* lcurr;
				tree_node* lcurrp;
				lcurrp = curr->right;
				lcurr = (curr->right)->left;
				while(lcurr->left != NULL)
				{
					lcurrp = lcurr;
					lcurr = lcurr->left;
				}
				curr->data = lcurr->data;
				delete lcurr;
				lcurrp->left = NULL;
			}
			else
			{
				tree_node* tmp;
				tmp = curr->right;
				curr->data = tmp->data;
				curr->right = tmp->right;
				delete tmp;
			}

		}
		return;
	}

}
template<class T>
void BinarySearchTree<T>::print_inorder()
{
	inorder(root);
}
template<class T>
void BinarySearchTree<T>::inorder(tree_node* p)
{
	if(p != NULL)
	{
		if(p->left) inorder(p->left);
		cout<<" "<<p->data<<" ";
		if(p->right) inorder(p->right);
	}
	else return;
}
template<class T>
void BinarySearchTree<T>::print_preorder()
{
	preorder(root);
}
template<class T>
void BinarySearchTree<T>::preorder(tree_node* p)
{
	if(p != NULL)
	{
		cout<<" "<<p->data<<" ";
		if(p->left) preorder(p->left);
		if(p->right) preorder(p->right);
	}
	else return;
}
template<class T>
void BinarySearchTree<T>::print_postorder()
{
	postorder(root);
}

template<class T>
void BinarySearchTree<T>::postorder(tree_node* p)
{
	if(p != NULL)
	{
		if(p->left) postorder(p->left);
		if(p->right) postorder(p->right);
		cout<<" "<<p->data<<" ";
	}
	else return;
}

int main()
{
	BinarySearchTree<int> b;
	int ch;
	int tmp,tmp1;
	while(1)
	{
		cout<<endl<<endl;
		cout<<" Binary Search Tree Operations "<<endl;
		cout<<" ----------------------------- "<<endl;
		cout<<" 1. Insertion/Creation "<<endl;
		cout<<" 2. In-Order Traversal "<<endl;
		cout<<" 3. Pre-Order Traversal "<<endl;
		cout<<" 4. Post-Order Traversal "<<endl;
		cout<<" 5. Removal "<<endl;
		cout<<" 6. Search "<<endl;
		cout<<" 7. Exit "<<endl;
		cout<<" Enter your choice : ";
		cin>>ch;
		switch(ch)
		{
		case 1 : cout<<" Enter data to be inserted : ";
			cin.ignore(1);
			cin>>tmp;
			b.insert(tmp);
			break;
		case 2 : cout<<endl;
			cout<<" In-Order Traversal "<<endl;
			cout<<" -------------------"<<endl;
			b.print_inorder();
			break;
		case 3 : cout<<endl;
			cout<<" Pre-Order Traversal "<<endl;
			cout<<" -------------------"<<endl;
			b.print_preorder();
			break;
		case 4 : cout<<endl;
			cout<<" Post-Order Traversal "<<endl;
			cout<<" --------------------"<<endl;
			b.print_postorder();
			break;
		case 5 : cout<<" Enter data to be deleted : ";
			cin.clear();
			cin.ignore(1);
			cin>>tmp1;
			b.remove(tmp1);
			break;
		case 6 : cout<<" Enter data to be searched : ";
			cin.ignore(1);
			cin>>tmp;
			b.search(tmp);
			break;
		case 7 : system("pause");                                                      
			return 0;
			break;
		}
	}
}
Topic archived. No new replies allowed.